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Determination of relative strain ellipsoids from sectional
measurements of stretching lineation
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Abstract
A novel strain inversion method is developed in this communication to determine relative strain ellipsoid (namely, principal directions and
relative magnitudes) from four or more independent measurements of stretching lineation or the longest elliptical axes on planar surfaces.
A linear, five-variable equation is obtained to describe such kind of measurements. Equations for these measurements are solved under some
auxiliary constraints for the relative strain ellipsoid. This is similar in formulation to stress inversion. We believe the method will provide
for structural geologists a simple, useful and more applicable tool for estimating strain in deformed rock where no passive strain marker other
than stretching lineation is commonly observed at outcrop.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

For structural geologists, the determination of three-
dimensional finite strain in rock is crucial in reconstructing
the deformation history. Numerous graphic (e.g., Ramsay,
1967; Ramsay and Huber, 1983) and numerical (e.g., Shima-
moto and Ikeda, 1976; Oertel, 1978; Milton, 1980; Gendzwill
and Stauffer, 1981; Owens, 1984; Shao and Wang, 1984;
Wheeler, 1989; De Paor, 1990; Robin, 2002; Shan et al.,
2007) methods have been proposed for restoring the strain
ellipsoid from strain ellipses measured on planar surfaces. In
developing an inversion method recently for the same purpose,
Shan et al. (2007) obtained a linear equation in six variables
for each individual sectional measurement of stretching
lineation or the longest elliptical axis, and highlighted an
unresolved issue concerning the feasibility of using these
equations to determine the strain ellipsoid. This issue is
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resolved in this short communication. As is proved below,
this kind of strain measurement is sufficient for determining
the relative strain ellipsoid (that is to say, principal directions
and relative magnitude differences), but insufficient to deter-
mine absolute principal magnitudes.

A very similar idea can be derived from Tocher (1964) and
others, who determined stereographically the optic axes of
a crystal from a minimum of four independent extinction mea-
surements, and was later applied to fabric analysis (Lisle,
1976). In essence, there is no difference in formulating sec-
tional measurements of optic indicatrix, fabric ellipsoid and
strain ellipsoid. However, a major contribution of this work
is to render this concept in mathematics that will permit
easy and fast use of a computer to make the determination.

Terms and their symbols used in this paper are listed in
Table 1.

2. Presentation of the problem

Normally, a strain ellipsoid is considered in the Cartesian
system (Fig. 1) as a quadric surface centered at the origin,
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Table 1

A list of symbols and their definitions

Symbols Definitions Comments

x, y, and z Coordinates of a point

on the ellipsoid in the real state.

Eq. (1).

X, Y, and Z Initial coordinate system.

x0, y0, and z0 Coordinates of a point on the

ellipsoid in the rotated

(reference) state.

Eqs. (3) and (4).

X0, Y0, and Z0 Rotated coordinate system.

bij Elements of a shape matrix. i, j ¼ 1,2,3; Eqs. (1),

(4)e(6) and (8)e(11).

b1, b2, and b3 Eigenvalues of a shape matrix. b1 � b2 � b3 > 0;

Eq. (2).

e1, e2, and e3 Magnitudes of the principal axes

of an ellipsoid.

e1�e2�e3 > 0; Eq. (2).

a and b Dip direction (azimuth) and dip

angle of a certain measured planar

surface.

Eq. (3).

q Pitch of the long axis of a strain

ellipse on the planar surface.

Eq. (3).

T Inverse rotation matrix Eq. (3).

tij Elements of inverse rotation matrix. i, j ¼ 1,2,3;

Eqs. (3)e(8) and (11).

k Elliptical parameter Eq. (4).

Measured planar surface

X (N)

Y (E)

Z

Fig. 1. Elements of strain measurement made on the planar surface in the Car-

tesian coordinate system (Shan et al., 2007). The X-axis is directed toward the

north, the Y-axis toward the east, and the Z-axis upward. The blank rectangle,

marked by three dashed lines and one thick line, represents a part of the hor-

izontal (XeY ) plane. The gray rectangle marked by thick lines represents the

plane where the stretching lineation is measured. See the text and Table 1 for

symbol definitions.
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described by the following equation (e.g., Owens, 1984;
Robin, 2002; Shan et al., 2007):

½ x y z �

2
4b11 b12 b13

b21 b22 b23

b31 b32 b33

3
5
2
4 x

y
z

3
5¼ 1 ð1Þ

where x, y and z are the coordinates of a point on the ellipsoid
in terms of the reference axes X, Y and Z, and bij (i, j ¼ 1, 2, 3)
is the element of the shape matrix (Shimamoto and Ikeda,
1976). The shape matrix is symmetrical, so bij ¼ bji (i, j ¼ 1,
2, 3). The principal axes of the ellipsoid have the same direc-
tions as the eigenvectors of the shape matrix, but different
dimensions from its eigenvalues,

e1 ¼
1ffiffiffiffiffi
b3

p ; e2 ¼
1ffiffiffiffiffi
b2

p ; e3 ¼
1ffiffiffiffiffi
b1

p ð2Þ

where b1, b2, and b3 are the corresponding eigenvalues of the
shape matrix (b1 � b2 � b3 > 0); e1, e2, and e3 are the corre-
sponding principal radii of the ellipsoid (e1 � e2 � e3 > 0).

Consider measurement of the direction of the longest ellipti-
cal axis, or stretching lineation, on a planar surface. We measure
on the surface the dip direction (a) and dip angle (b) of the sur-
face, and the pitch (q) of the long axis of the sectional ellipse of
the 3-D ellipsoid. The pitch is defined as the intersection angle
between the long axis of the ellipse and the westward strike of
½ x0 y0 �

2
66664

t11t11b11 þ 2t11t21b12 þ 2t11t31b13

þt21t21b22þ 2t21t31b23 þ t31t31b33

t11t12b11þ ðt11t22þ t21t
þðt11t32 þ t31t12Þb13 þ
þðt21t32 þ t31t22Þb23 þ

ðsymmetricalÞ t12t12b11þ 2t12t22b12 þ
þt22t22b22þ 2t22t32b23
the plane after the plane has been rotated around a vertical
axis to dip toward the northward X-axis (Fig. 1).

For the given measurement, we will have a simple expression
of the strain ellipse on the plane by manipulating a series of ro-
tations to transform the strain measurement plane into a horizon-
tal one where the long axis of the strain ellipse is aligned with the
X-axis. This manipulation can be implemented by rotating
around the Z-axis with an angle of �a, around the Y-axis with
an angle of �b, and finally around the Z-axis with an angle of
q � 90�. Let T stand for the inverse manipulation of these rota-
tions that defines the relationship between the old and the new
coordinate systems:

2
4 x

y
z

3
5¼ T

2
4 x0

y0

z0

3
5 ð3Þ

T ¼

2
4 t11 t12 t13

t21 t22 t23

t31 t32 t33

3
5

¼

2
4 cos a �sin a 0

sin a cos a 0
0 0 1

3
5
2
4 cos b 0 �sin b

0 1 0
sin b 0 cos b

3
5

�

2
4 cosð90� � qÞ sinð90� � qÞ 0
�sinð90� � qÞ cosð90� � qÞ 0

0 0 1

3
5

Application of the above transformation to Eq. (1) leads to
the strain ellipsoid in its local X0eY0eZ0 coordinate system.
Because the strain ellipse of interest lies in the X0eY0 plane after
rotation, we have Z0 ¼ 0, thus giving the following expression
for the rotated ellipse:
12Þb12

t21t22b22

t31t32b33

2t12t32b13

þ t32t32b33

3
77775
�

x0

y0

�
¼ k ð4Þ
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where k is the elliptical parameter, depending upon each individ-
ual sectional measurement.

The local coordinate system is specified as having the sec-
tion ellipse symmetrical to its axes, so the matrix in Eq. (4)
must have zero for its off-diagonal elements. This is manda-
tory because, in the way described above, the rotated strain el-
lipse on the section has the largest and the smallest strain axis
toward the X0- and the Y0-axis, respectively. Therefore, we
have for this measurement the following linear equation.

t11t12b11þ ðt11t22þ t21t12Þb12þ ðt11t32þ t31t12Þb13þ t21t22b22

þ ðt21t32 þ t31t22Þb23 þ t31t32b33 ¼ 0 ð5Þ

It seems possible, according to Eq. (5), that we can deter-
mine the relative strain ellipsoid, that is to say the directions
and the relative magnitudes of the strain principal axes, using
only sectional measurements of this type. At least five such in-
dependent measurements would be needed, under some auxil-
iary constraint, such as the unit length of the unknown vector
[b11, b12, b13, b22, b23, b33]. Unfortunately, there are an infinite
number of solutions of the unknown vector, no matter how
many measurements are taken into consideration (Shan
et al., 2007). This under-determinacy is attributed to intrinsic
inadequacy in the determination of this type of strain measure-
ment. Shan et al. (2007) noticed this problem, but failed to ac-
count for it in a strict sense.

3. Problem resolved

Eq. (5) can be rewritten in matrix form as follows:

½ t11 t21 t31 �

2
4b11 b12 b13

b21 b22 b23

b31 b32 b33

3
5
2
4 t12

t22

t32

3
5¼ 0 ð6Þ

By its definition, and as in Eq. (3), T is an orthogonal ma-
trix. Accordingly, it consists of orthogonal columns. Take the
first two columns, [t11, t21, t31] and [t12, t22, t32], for example.
From them, we have

t11t12 þ t21t22þ t31t32 ¼ 0 ð7Þ

So, if the diagonal elements b11, b22, and b33 of the shape
matrix have the same value, regardless of their magnitudes,

t11t12b11þ t21t22b22 þ t31t32b33 ¼ 0 ð8Þ

These diagonal elements are therefore linearly dependent.
That is why all the matrix elements cannot be determined sim-
ply from strain measurements of this kind. This is shown by
solving for t31t32 in Eq. (7) and substituting into Eq. (5) to
give the following equation:

t11t12ðb11� b33Þ þ ðt11t22þ t21t12Þb12þ ðt11t32þ t31t12Þb13

þ t21t22ðb22 � b33Þ þ ðt21t32þ t31t22Þb23 ¼ 0 ð9Þ

As is apparent in the above equation, the three diagonal
elements b11, b22, and b33 cannot simultaneously be determined,
even with rescaling to unit length of the unknown vector
[b11 � b33, b12, b13, b22 � b33, b23]. The under-determinacy
of the three diagonal elements lies in that only the differences
(b11 � b33) and (b22 � b33) can be known in this way. To
determine b11, b22, and b33 requires other kinds of strain mea-
surements with more information, such as strain axial ratios.

Sensibly and justifiably, we may use a convention for
specifying the diagonal elements by introducing the following
auxiliary constraint:

b11þ b22 þ b33 ¼ 0 ð10Þ

This is equivalent to determining the difference (hyperbo-
loid) between the strain ellipsoid and a reference sphere of
the equal volume.

Solving for b33 in Eq. (10) and substituting into Eq. (5)
leads to the following equation:

ðt11t12 � t31t32Þb11 þ ðt11t22 þ t21t12Þb12 þ ðt11t32 þ t31t12Þb13

þ ðt21t22� t31t32Þb22þ ðt21t32þ t31t22Þb23 ¼ 0 ð11Þ

So far, Eq. (11), as well as the constraint of unit length of
the unknown vector [b11, b12, b13, b22, b23], constitutes the ba-
sis of our strain inversion method that determines the relative
strain ellipsoid from measurements of the longest elliptical
axes on the planar surfaces. A number of four or more inde-
pendent measurements of this kind are needed for the determi-
nation. This is theoretically similar to inversion of stress from
measured fault/slip data (Fry, 1999; Shan et al., 2003).

4. Procedure

In the previous section, we developed a new strain inversion
method for determining the strain principal directions from sec-
tional measurement of the longest elliptical axes or stretching
lineation. The procedure to realize it is summarized as follows:

(1) For each strain measurement, calculate the rotation matrix
T, according to Eq. (3),

(2) Calculate datum vector [t11t12 � t31t32, t11t22 þ t21t12, t11t32

þ t31t21, t21t22 � t31t32, t21t32 þ t31t32] from the matrix T,
according to Eq. (11),

(3) Rescale the datum vector to unit magnitude, for equal
weight in the calculation to follow,

(4) Solve for the best solution of unknown vector [b11, b12,
b13, b22, b23] through applying the moment method
(Shan et al., 2003) to all unitized datum vectors,

(5) Calculate b33 from the solution, according to Eq. (10),
(6) Restore the shape matrix, according to Eq. (1), and
(7) Calculate the principal directions and relative magnitudes

through applying the Jacobian method to the restored
shape matrix.

For a set of such kind of artificial data having no measure-
ment errors (Shan et al., 2007), estimated strain principal di-
rections by using the proposed inversion method are similar
to prescribed principal directions.



Table 2

Fabric data (Lisle, 1976) and results from using the progressive elimination method and the proposed method, respectively

Exposure planes (�) Fabric traces (�) Fabric ellipsoids (�)

Dip direction Dip angle Bearing Plunge e1ee2 planes Lineations V

Bearing Plunge Bearing Plunge

130 90 223 40 Lisle’s (1975) result

35 90 305 47 263 62 178 11 50.5

90 90 180 9 Our result

181 90 271 64 265.0 63.6 179.4 8.7 41.4

Fabric traces are herein equivalent to stretching lineations observed on the exposure planes. V is the acute angle between two poles to planes showing circular

sections in fabric ellipsoid. See the text and Lisle’s (1976) paper for more explanation.
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5. Application

The third example of Lisle (1976; see his Table 1) was used
to demonstrate the feasibility of the method proposed above. It
consists of four measurements that were made on a series of
cozonal faces cut on a real hand specimen (Table 2). Lisle
(1976) used the progressive elimination method (Tocher,
1964) in crystallography to determine the fabric in the speci-
mens from these measurements (Table 2). Application of the
proposed method to the example gives rise to the result listed
in Table 2. It is very similar in the orientations of e1ee2 plane
and of the lineation to the result of Lisle (1976). Only for the
angle V, it turns out a great deal smaller, but still close to
43.5�, the lower limit by Lisle (1975).

Meanwhile, the eigenvalues obtained at step 4 are
5.63E�08, 2.29E�01, 3.80E�01, 8.43E�01, and 2.55, re-
spectively. Compared with other eigenvalues, the least eigen-
value is extremely small, indicating that the solution of the
unknown vector is well determined.
6. Conclusions and remarks

Sectional measurements of the longest elliptical axes or
stretching lineation cannot directly be used as Eq. (5) to deter-
mine the strain principal ellipsoid, by virtue of their intrinsic
inadequacy in the determination (Shan et al., 2007). This inad-
equacy lies in that the diagonal elements of the shape matrix,
b11, b22, and b33, are linearly dependent. To compensate for
this requires the addition of an auxiliary constraint, as given
in Eq. (9). Under this constraint, the shape matrix may be
solved for using the moment method, just as in the inversion
of stress from measured fault/slip data (Shan et al., 2003).
The strain principal directions and relative magnitude differ-
ences, or the relative strain ellipsoid, are readily obtained
from the calculated shape matrix. But the absolute principal
magnitudes and their ratios remain unresolved, the determina-
tion of which needs other kinds of sectional measurements
with more strain information (Shan et al., 2007).

Theoretically speaking, the proposed strain inversion
method is very similar to the stress inversion method. Even
without the record of axial ratios or the lengths of the elliptical
axes, stretching lineation can be used to infer the relative strain
ellipsoid. A minimal number of four such independent mea-
surements is needed for this purpose. We believe it will pro-
vide for structural geologists a simple, useful and more
applicable tool of estimating strain in deformed rock or rock
fabrics where only stretching lineation is observed at outcrop e
a common case that good passive strain markers are absent.
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